Nitrate and nitrite transport in Escherichia coli.
نویسندگان
چکیده
Two polytopic membrane proteins, NarK and NarU, are involved in nitrate and nitrite uptake and nitrite extrusion by Escherichia coli. A third polytopic membrane protein, NirC, functions only in nitrite transport. During exponential growth, the quantity of NarU in membrane fractions was <0.01% of the quantity of NarK. During the stationary phase of growth, the ratio of NarU to NarK increased to 0.1%. However, in the exponential phase of growth, the strain expressing only NarK transports and reduces nitrate and nitrite at a rate only slightly higher than that of the strain expressing only NarU, indicating that, in a NarK(+) strain, the rate of nitrate reduction is not limited by the rate of nitrate transport. By measuring nitrate and nitrite transport abilities of strains expressing only narK or expressing both narK and nirC, we hypothesized that NarK might function as a primary nitrate-nitrite antiporter. After nitrate is imported by NarK and reduced to nitrite, some nitrite is expelled from the cell and then reimported for reduction to ammonia. Two highly conserved positively charged residues, Arg-87 and Arg-303 of NarU, were shown by site-directed mutagenesis to play a key role in anion transport. This result indicates that NarU might form a single channel for nitrate and nitrite transport.
منابع مشابه
Different responses to nitrate and nitrite by the model organism Escherichia coli and the human pathogen Neisseria gonorrhoeae.
The ability of Escherichia coli to use both nitrate and nitrite as terminal electron acceptors during anaerobic growth is mediated by the dual-acting two-component regulatory systems NarX-NarL and NarQ-NarP. In contrast, Neisseria gonorrhoeae responds only to nitrite: it expresses only NarQ-NarP. We have shown that although N. gonorrhoeae NarQ can phosphorylate E. coli NarL and NarP, the N. gon...
متن کاملStructural basis for dynamic mechanism of nitrate/nitrite antiport by NarK
NarK belongs to the nitrate/nitrite porter (NNP) family in the major facilitator superfamily (MFS) and plays a central role in nitrate uptake across the membrane in diverse organisms, including archaea, bacteria, fungi and plants. Although previous studies provided insight into the overall structure and the substrate recognition of NarK, its molecular mechanism, including the driving force for ...
متن کاملThe P aracoccus denitrificans NarK‐like nitrate and nitrite transporters—probing nitrate uptake and nitrate/nitrite exchange mechanisms
Nitrate and nitrite transport across biological membranes is often facilitated by protein transporters that are members of the major facilitator superfamily. Paracoccus denitrificans contains an unusual arrangement whereby two of these transporters, NarK1 and NarK2, are fused into a single protein, NarK, which delivers nitrate to the respiratory nitrate reductase and transfers the product, nitr...
متن کاملRegulation of narK gene expression in Escherichia coli in response to anaerobiosis, nitrate, iron, and molybdenum.
The regulation of the narK gene in Escherichia coli was studied by constructing narK-lacZ gene and operon fusions and analyzing their expression in various mutant strains in response to changes in cell growth conditions. Expression of narK-lacZ was induced 110-fold by a shift to anaerobic growth and a further 8-fold by the presence of nitrate. The fnr gene product mediates this anaerobic respon...
متن کاملNitrate and nitrite control of respiratory nitrate reduction in denitrifying Pseudomonas stutzeri by a two-component regulatory system homologous to NarXL of Escherichia coli.
Bacterial denitrification is expressed in response to the concurrent exogenous signals of low-oxygen tension and nitrate or one of its reduction products. The mechanism by which nitrate-dependent gene activation is effected was investigated in the denitrifying bacterium Pseudomonas stutzeri ATCC 14405. We have identified and isolated from this organism the chromosomal region encoding the two-co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biochemical Society transactions
دوره 33 Pt 1 شماره
صفحات -
تاریخ انتشار 2005